11.10 SOLUTION OF TWO DIMENSIONAL HEAT EQUATION

$$\frac{\partial u}{\partial t} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) \qquad \dots (1)$$

The methods employed for the solution of one dimensional heat equation can be readily extended to the solution of (1).

Consider a square region $0 \le x \le y \le a$ and assume that u is known at all points within and on the boundary of this square.

If h be the step-size then a mesh point (x, y, t) = (ih, jh, nl) may be denoted as simply (i, j, n).

Replacing the derivatives in (1) by their finite difference approximations, we get

$$\frac{u_{i,j,n+1}-u_{i,j,n}}{1}$$

i.e.

$$= \frac{c^2}{h^2} \left\{ (u_{i-1, j, n} - 2u_{i, j, n} + u_{i+1, j, n}) + (u_{i, j-1, n} - 2u_{i, j, n} + u_{i, j+1, n}) \right\}$$

$$= u_{i, j, n+1} = u_{i, j, n} + \alpha(u_{i-1, j, n} + u_{i+1, j, n} + u_{i, j+1, n} + u_{i, j-1, n} - 4u_{i, j, n}) \qquad \dots (2)$$

$$= u_{i, j, n+1} = u_{i, j, n} + \alpha(u_{i-1, j, n} + u_{i+1, j, n} + u_{i, j+1, n} + u_{i, j-1, n} - 4u_{i, j, n}) \qquad \dots (2)$$

where $\alpha = lc^2/h^2$. This equation needs the five points available on the *n*th plane (Fig. 11.29).

Fig. 11.29

using the points on the nth plane. It is followed by plane-by-plane evaluation. This method is known as ADE (Alternating Direction Explicit) method. The computation process consists of point-by-point evaluation in the (n + 1)th plane

Example 19.3. Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ subject to the initial conditions u(x, y)

 $y,\ 0) = \sin 2\pi x \sin 2\pi y,\ 0 \le x,\ y \le 1$, and the conditions $u(x,y,t) = 0,\ t > 0$ on the boundaries, using ADE method with $h = \frac{1}{3}$ and $\alpha = \frac{1}{8}$. (Calculate the results for one time level).

Sol. The equation (2) above becomes

$$\begin{split} u_{i,j,n+1} &= u_{i,j,n} + \frac{1}{8} \left(u_{i-1,j,n} + u_{i+1,j,n} + u_{i,j+1,n} + u_{i,j-1,n} - 4u_{i,j,n} \right) \\ u_{i,j,n+1} &= \frac{1}{2} \left(u_{i,j,n} + \frac{1}{8} \left(u_{i-1,j,n} + u_{i+1,j,n} + u_{i,j+1,n} + u_{i,j-1,n} \right) \right) \end{split}$$

The mesh points and the computational model is given in Fig. 11.30

i.e.

Fig. 11.30

NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

At the zeroth level (n = 0), the initial and boundary conditions are

$$u_{i,j,\ 0} = \sin\frac{2\pi i}{3}\sin\frac{2\pi j}{3}$$

 $u_{i, 0, 0} = u_{0, j, 0} = u_{3, j, 0} = u_{i, 3, 0} = 0$; i, j = 0, 1, 2, 3

and

Now we calculate the mesh values at the first level:

$$u_{i,j,1} = \frac{1}{2} u_{i,j,0} + \frac{1}{8} (u_{i-1,j,0} + u_{i+1,j,0} + u_{i,j+1,0} + u_{i,j-1,0})$$

$$i - i - 1 \text{ in } (9)$$

...(2)

(i) Put
$$i = j = 1$$
 in (2):

$$u_{1,\,1,\,1} = \frac{1}{2}\,u_{1,\,1,\,0} + \frac{1}{8}\,(u_{0,\,1,\,0} + u_{2,\,1,\,0} + u_{1,\,2,\,0} + u_{1,\,0,\,0})$$

$$=\frac{1}{2}\left(\sin\frac{2\pi}{3}\right)^2+\frac{1}{8}\left(0+\sin\frac{4\pi}{3}\sin\frac{2\pi}{3}+\sin\frac{2\pi}{3}\sin\frac{4\pi}{3}+0\right)$$

$$= \frac{3}{8} + \frac{1}{8} \left(-\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} \right) = \frac{3}{16}$$

(ii) Put
$$i = 2, j = 1$$
 in (2)

$$u_{2,\,1,\,1} = \frac{1}{2}\,u_{2,\,1,\,0} + \frac{1}{8}\,(u_{1,\,1,\,0} + u_{3,\,1,\,0} + u_{2,\,2,\,0} + u_{2,\,0,\,0})$$

$$=\frac{1}{2}\sin\frac{4\pi}{3}\sin\frac{2\pi}{3}+\frac{1}{8}\left\{\left(\sin\frac{2\pi}{3}\right)^2+0+\left(\sin\frac{4\pi}{3}\right)^2+0\right\}$$

$$= -\frac{1}{2} \left(\frac{\sqrt{3}}{2}\right)^2 + \frac{1}{8} \left\{ \left(\frac{\sqrt{3}}{2}\right)^2 + \left(-\frac{\sqrt{3}}{2}\right)^2 \right\} = -\frac{3}{16} \ .$$

$$u_1 = \frac{1}{2} u_1$$

(iii) Put
$$i = 1, j = 2$$
 in (2):

$$u_{1, 2, 1} = \frac{1}{2} u_{1, 2, 0} + \frac{1}{8} (u_{0, 2, 0} + u_{2, 2, 0} + u_{1, 1, 0})$$

$$= \frac{1}{2} \sin \frac{2\pi}{3} \sin \frac{4\pi}{3} + \frac{1}{8} \left\{ 0 + \left(\sin \frac{4\pi}{3} \right)^2 + 0 + \left(\sin \frac{2\pi}{3} \right)^2 \right\}$$

$$= -\frac{3}{8} + \frac{1}{8} \left(\frac{3}{4} + \frac{3}{4} \right) = -\frac{3}{16}$$
(iv) Put $i = 2, j = 2$ in (2):
$$u_{-3} = \frac{1}{2} u_{-3} + \frac{1}{2} (u_{-3} + u_{-3} + \frac{1}{2} u_{-3$$

$$\begin{aligned} u_{2,\,2,\,1} &= \frac{1}{2}\,u_{2,\,2,\,0} + \frac{1}{8}\,(u_{1,\,2,\,0} + u_{3,\,2,\,0} + u_{2,\,3,\,0} + u_{2,\,1,\,0}) \\ &= \frac{1}{2}\bigg(\sin\frac{4\pi}{3}\bigg)^2 + \frac{1}{8}\bigg(\sin\frac{2\pi}{3}\sin\frac{4\pi}{3} + 0 + 0 + \sin\frac{4\pi}{3}\sin\frac{2\pi}{3}\bigg) \end{aligned}$$

Similarly the mesh values at the second and higher levels can be calculated

 $\frac{3}{8} + \frac{1}{8} \left(-\frac{3}{4} - \frac{3}{4} \right) = -\frac{3}{16}$

PROBLEMS 11.4

- Find the solution of the parabolic equation $u_{xx} = 2u_t$ when u(0, t) = u(4, t) = 0 and u(x, 0)=x(4-x), taking h=1. Find the values upto t=5.
- Solve the equation $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$ with the conditions u(0, t) = 0, u(x, 0) = x(1-x) and u(1, t) = 0
- 0. Assume h = 0.1. Tabulate u for t = k, 2k and 3k choosing an appropriate value of k. (Anna, B.E., 2004)
- Given $\frac{\partial^2 f}{\partial x^2} \frac{\partial f}{\partial t} = 0$; f(0, t) = f(5, t) = 0, $f(x, 0) = x^2(25 x^2)$; find the values of f for x = ih(i=0,1,...,5) and t=jk (j=0,1,...,6) with h=1 and $k=\frac{1}{2}$, using the explicit method. (Anna, B. Tech., 2012)
- Given $\partial u/\partial t = \partial^2 u/\partial t^2$, u(0, t) = 0, u(4, t) = 0 and $u(x, 0) = \frac{x}{3}$ (16 x^2). Obtain $u_{i,j}$ for 10 = 1, 2, 3, 4 and j = 1, 2 using Crank-Nicholson's method.
- Solve the heat equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject to the conditions u(0, t) = u(1, t) = 0 and $u(x, 0) = \begin{cases} 2x & \text{for } 0 \le x \le 1/2 \\ 2(1-x) & \text{for } 1/2 \le x \le 1 \end{cases}$

Take h = 1/4 and k according to Bandre-Schmidt equation.

Solve the 2-dimensional heat equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ satisfying the initial condition: $u(x, y, 0) = \sin \pi x \sin \pi y$, $0 \le x, y \le 1$ and the boundary conditions : u = 0 at x = 0 and x = 1for t > 0. Obtain the solution upto two time levels with $h = \frac{1}{3}$ and $\alpha = \frac{1}{8}$